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Initial motion of a bubble in a fluidized bed 
Part 1. Theory 

By J. D. MURRAY? 
The University of Michigan, Ann Arbor, Michigan 

(Received 25 January 1966 and in revised form 14 November 1966) 

This is a theoretical study of the experimental work in the succeeding paper by 
Partridge & Lyall (1967). This paper shows that the characteristic shape of 
typical bubbles in fluidized beds, with a large solids to fluid density ratio, will be 
reached after a time of order (ro/g)* from the introduction, naturally or artificially, 
into the bed of a circular or spherical bubble, where ro is the initial bubble radius 
and g the gravitation constant. The initial acceleration is gin two dimensions and 
2g in three dimensions. A measure of the growth rate of the distortion from a 
circular or spherical shape is given as a tentative guide to wake formation and 
growth rate. It is shown that the wake growth rate in the three-dimensional case 
is faster than in the two-dimensional case, and, further, that bubbles formed 
naturally at  the bottom of a fluidized bed will distort faster than bubbles starting 
from rest. 

The method used is based on a convective term linearization process on equa- 
tions of motion for a fluidized system given by Murray (1965a, b) and an exten- 
sion of a method given by Walters & Davidson (1962, 1963) in the case of the 
initial motion of a gas bubble formed in an inviscid liquid and starting from rest. 

Comparison with experiment is difficult since the bubble conditions discussed 
in the theory are very difficult to reproduce artificially in the laboratory. The 
results obtained by Partridge & Lyall (1967) are shown to be not inconsistent 
with those predicted here. 

1. Introduction 
Bubbles, or voids of particles, appear in most gas-fluidized beds. Empirically 

bubbles occur in beds where pJp, > 10, where ps, pf are the respective solids and 
fluid densities, and so the study of bubbles is not solely restricted to gas beds. 
Bubbles are the prime cause of the good particle-mixing properties of gas-fluidized 
beds as shown by Rowe & Partridge (1962). 

The wake of particles which moves with the bubble is important in particle 
mixing and it seems of interest, therefore, to study the initial rate of distortion 
from a circular or spherical void introduced into a bed in an attempt to obtain 
information on the growth of the wake. It is also of interest in the general study 
of bubble motion in fluidized beds. 

This investigation is theoretical and the results compared with known experi- 
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mental facts and with the experimental work in the succeeding paper by Par- 
tridge & Lyall(l967). Pair comparison is found with the experimentally measure- 
able quantities. The equations used below are those suggested by Murray (19654.  
It is shown that the dimensionless particle concentration, 2, may be reasonably 
approximated by a constant in this unsteady case in a similar manner to that 
given by Murray (1965b), who studied the steady motion of fully developed 
bubbles. He also discussed a possible steady wake configuration. The subsequent 
equations with Z constant are shown to admit of potential flows for the solids and 
gas motions when the convective terms are linearized using a modified Oseen 
technique. The method given by Walters & Davidson (1962, 1963) can then be 
extended to fluidized-bed bubbles. Their method deals with the initial motion 
from rest of a gas bubble formed in an inviscid liquid. They assume that potential 
flow will persist for the initial motion, that the pressure is constant inside the 
bubble, and that distortions from the initial given shape are small for small times. 

In this paper the situation is a two-phase flow and unlike Walters & Davidson’s 
case is reduced to a linear problem. This linearity is a necessity for the consistency 
of the constant Z solution and the subsequent irrotationality. 

2. Equations of motion and their subsequent linear form 

by Murray (1965a), which are, for fluidized beds with ps/pf 9 1, 
The continuum equations of motion used are the ‘inviscid’t equations derived 

(aZ/at’) + div Zv; = 0, (1) 

- (a2jat’) + div (1 - 2) v; = 0, ( 2 )  

ps Z[(av;/at’)+(v;.grad)v;] = -gp,Zi+D‘(Z)(v;-v~), (3) 

gradp‘ = -D’(Z) (vi-v;), (4) 
where, in obtaining (1)-(4), p,, pf are taken to be constant, 2 is the dimensionless 
particles volume fraction, v;, v; are the continuum fluid and solids velocities, p‘ 
is the pressure in the fluid, D’(Z) is the total drag on the particles (defined by 
Murray 1965a), t‘ is the time and i is the unit vector in the vertical 2‘-direction. 

The following non-dimensional quantities are introduced, where vo is the inter- 
stitial fluid velocity far from any bubble, ro the initial bubble radius which is 
introduced into the bed at t’ = 0, U’(t‘) the velocity of the bubble at  time t’, and 
r‘ the space vector: v; = V0Vf, v; = VoVs, t’ = rot/vo, ] ( 5 )  

(x’, y‘,x’) = r’ = ror, D’(2) = psvoD(Z)/ro, 
p’ = psvip, F = v;/gro, U‘ = voU(t) ,  

T = t/Fg = t’(g/ro)$, V = U(0)FS = U’(0)/(gro)&. 

Using ( 5 ) ,  equations (1)-(4) become in dimensionless form 

(82/8t) + div Zv, = 0, 

- (aZ/at) + div (1 - 2) vf = 0, 

Z[(av,/at)+ (v,.grad)v,] = -iZ/F+D(Z) (vf-vs), 
gradp = - D(Z) (vf - v,). 

(6) 

(7) 

( 8) 

(9) 
I‘ The continuum solids and gas stress tensors are omitted (see Murray 1965a). 
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The origin of the co-ordinates is at  the centre of the bubble r = 0, which rises, 
in the i-direction, with a velocity U(t) .  Motion far from the bubble, where 2 = Z,, 
is given by (8) ,  (9) as vf = i, v, = 0, Z = 2,) 1 

Equations (6)-(9) are now perturbed about the uniform state (10) (far from the 
bubble). The perturbed quantities are here denoted by asterisks, and from (6)- 
(10) satisfy 

(aZ*/at) + 2, div v; = 0, 

- (aZ*/at)-(aZ*/as)+(l-Z,)divvf* = 0, 

Z,(av:/at) = - iZ*/F + D(Z,) (v; - v:) + iZ*(dD/dZ)Z,, 

gradp" = -D(Z,) (v? - v:) - iZ*(dD/dZ),,, 

the first three of which give a single equation for Z*, namely 

a 2 2  * 1 az* (1-22,)  az* 
at2 +F(l-Z,,) %-+[(z),o - F F Z ? ) l  an = O' 

The only solution of this equation which tends to zero as r-fco is Z* = 0. Thus 
Z = 2, is the solution for the linearized set of equations above. 

If we now introduce a real function c ( t ) t  (see also $4) by writing in (8) 

c(t)av,/ax for (v,. grad) v, (11) 

in an extension of the modified Oseen process introduced by Lewis & Carrier 
( 1949) and used by Murray (1965 b) ,  where here the undetermined c(t) is a function 
of t7.the solution for Z* above is unchanged. We now approximate to the actual 
solution by taking 2 = 2, throughout the whole field of flow and get, with the 
above linearization (11) of the convective terms, the following linear set of 
equations for vf, v,, p:  

div v, = 0 = div vf, (12) 

(13) 

(14) 

only three of which are independent ((13), (14), and one of (12)). With vf, v , ~  
irrotational in the uniform state far from the bubble, (12)-( 14) show that vf7 v, 
are irrotational everywhere, and that p is harmonic. As shown by Murray (1965 b ) ,  
the irrotationality and the Z = 2, solution are a consequence of the linearization 
process, and so the non-linear form (v,. grad)v, cannot be used in (13). Equations 
(13) and (14) thus give a Bernoulli-type equation with iv: linearized to c( t )  v,. 

Disturbance quantities (not small) are now introduced with the use of primes 
(not to be confused with those for dimensional quantities above) 

vf = i+v;, v, =vi, 

(av,/at) + c ( t )  (av,/az) = - i/F + (vf- v,)/F, 

grad$) = - ( .qt /F)  (vf-vs), 

t Its inclusion allows more freedom in obtaining a better approximate solution. 
27-2 
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where v;, v:, p' all tend to zero as r +co. vf, v,, gradp can now be expressed in 
terms of derivatives of harmonic functions. 

The case of a two-dimensional cylindrical bubble introduced into the bed will 
be discussed in detail in $8 3-7 and some corresponding results given in 9 8 for a 
three-dimensional bubble. Details of the latter case are given in the appendix. 

3. Method and solution for the two-dimensional case 
Introduce the complex potentials wf (2,  t ) ,  w,(z, t )  for disturbance quantities 

vi, v; and the complex harmonic function P(z,  t ) ,  where p' = Re P(z, t ) .  Equa- 
tions (13) and (14) give, using (15), 

1 (16) 
(aw,/at) + c ( t )  (aw,/az) - F ( W f -  w,) = 0,  

P + (Zo/F)  (Wf - Ul,) = 0. 

We now write wf, u ! ~ ,  P as harmonic series, which tend to zero at  infinity, in the 
form 

W m \ 

where the functions of time s,, f,, p m  must be chosen so that the pressurep in (15) 
is constant inside the bubble. This is the essence of the method given by Walters 
& Davidson (1962, 1963), who, in the equivalent of (17), use polar co-ordinates 
and the scalar potential for the single velocity. In  their case p is not harmonic. 

Substitution of (17) into (16), noting that 

since the origin of the co-ordinate system is moving upwards with velocity U ,  
gives the following differential recurrence relations on equating powers of x : 

(18) I &-F-1(fm-s,) = - (m- 1) [U-c(t)]s,_,, 

Pm = - (Zom ( f m -  Sm) (m 3 1). 

The constant pressure condition inside the bubble is used in a similar manner 
to  that given by Walters & Davidson (1962) and is as follows. For small times we 
anticipate small changes in bubble shape from r = 1 at t = 0 to r = ra(8, t ) ,  say, 
for t > 0, and we introduce ((0, t )  by 

rd0, t )  = 1 + 5(0, t ) ,  (19) 

where (will be small for small t. If p = pb inside the bubble the second of (15), 
(17) and (19), and the constant pressure condition require 
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x [ 1 - m l +  +m(m + 1 )  tz + O ( F ) ] ,  

to be independent of 8. This can be done to O( 1) if the p,, are such that 

Pm = zosm1/P, (20) 

where S,, is the Kronecker delta. If we write l& = U ( 0 ) ,  (18) and (20) now give 

(21) i s, = - (U, + t / F )  s,, - (,m - 1 )  

fm = sm - sm1- 

[ U(7)  - C ( 7 ) ] S , , L - l d 7 ,  s: 
From (21 ) ,  

U ( t )  = -sl(t) = l L +  t p ,  

f l ( t )  = - ( l+Uo+t /F) .  

When c(t) has been determined, (21 )  gives s,, f m  and the unsteady flow patterns 
can be obtained from (15) and (17). Various forms for c( t )  are derived in 94. 

In view of the linearity we can write c ( t )  as 

m 

c ( t )  = 3 Cl tl, 
z=o 

(23 )  

where the cl a,re constants which are evaluated in $4. The general form for s, and 
f m  can then be found in terms of the cz. The cz are chosen so that the resulting 
solutions will satisfy, as closely as possible, some average condition on the non- 
linear equation. 

With U(t )  from (22) and c(t) from (23 ) ,  it is seen from (21) that the appropriate 
expansion for s, for small times is 

which on substitution in (21) gives the recurrence relation 

fm is now given by (21) .  With the cl from $ 4  the solutions are given explicitly. 
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4. Evaluation of c ( t )  

Various methods can be used to obtain a form for c( t ) .  All of those suggested 
here assign a form to c( t )  such that the resulting solutions will satisfy some 
averaging condition involving the non-linear convective terms but with Z = 2,. 
As shown below the actual character of the solution is fairly insensitive to the 
method used, as it should be, of course. The inclusion of c ( t )  is a device which 
allows slightly greater freedom in the linear theory to approximate the exact 
solution. 

In  boundary-layer-type problems for which the method was introduced, where 
c ( t )  is constant, by Lewis & Carrier (1949) it  is clear physically what should be 
done. Here the problem does not have a boundary-layer character and so their 
reasoning is not directly applicable. The following methods, however, are exten- 
sions suggested from their discussion. 

It seems reasonable to require the non-linear solids equation (with Z = Z,) for 
the disturbance quantities to be satisfied on the average. That is, we require 

Alternatively the first moment of the integrand in (26) could be used instead, 
giving 

(27) 

Since it was the non-linear convective term which was approximated it is also 
reasonable to require, say, the integral of the difference of the exact and approxi- 
mate convective terms to be zero. Suitable weighting, with the velocity, for 
example, of this difference could also be used in the integral. This results in c ( t )  
being given by integrals of the form 

where CI is an integer. 
With c ( t )  given by (26), (27) or (28) it is anticipated that the resulting wf, w,, P 

will approximate reasonably a t  least the gross qualitative features of the exact 
solution. 

Using thes econd of (31), (24) and (35), equations (26), (27) and (28) give 
respectively 

(29) 
1 "  

c( t )  = -., C ms,, 
m = l  

m 
O3 mS-3 

c ( t )  = - 2 ~ [ms,s,+(m- l)s,-,2s2+ ... +slmsl,l/2 C (m+ l)sm, (30) 
, , L = l  m+ 2 m = l  

Equation (39) is the same as the special case, a = 0, of (31). 
With s, from (24) with (25), (29)-(31) determine the solution, for each c ( t )  

used, in terms of V, and F. All of (29)-(31) determine the c, in terms of the mul, 
which on substitution in (25) give recurrence relations in terms of mul alone. 
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5. Initial change in bubble shape and estimate of wake growth rate: 

A first approximation to the actual bubble shape for small times is obtained by 
equating the normal solids velocity at  r = rb with the changing shape. Thus, we 
write 

u, * 0 

3, + u cos 8 = [aRe w,~/~T],=, .~=~+~.  

From ( 1 7 )  and (19), with .$ small, this gives the equation for .$ as 

m m 

m=l  m=l 
< - c  2 m(,m+ l)s,cosm8 = - Ucos8-  msmcos,m8+0((2). 

Thus, t o  O(.$), 
m m 

m = l  77&= 2 
g-6 c m(m+l)smcosm8 = - c msmcosm8. (32) 

With s,,~ from (24), it is appropriate to write 
63 

( (8 , t )  = t2 2 &tl, 
z=o 

which on substitution in (32) gives 

(33) 

1 Q = 1+2 [ L J 6 0 + & - 2  J f l +  *.. + ~ 0 4 - , - ~ z l  (1 2) 

with - - 2,gz cos 8 + 2*3,al-, COS 28 + . . . + (1 + 1) (I! + 3 ) l + l ~ o  COS (1 + 1) 8, 

A$ = 2 2al cos 28 + 3 3c11--1 cos 38 + . . . + (I + 2) l+2(T0 cos (I + 2) 8. 

The restriction I Q 2 in (34) is necessary since the neglected term of 0(t2) in (32) 
gives rise to a term 3U0cos8[it4, which gives an extra contribution to t3. The 
correct t3 is then given by (34) plus - Q1cO cos 8[: ( = fU0 cos 86:). Higher-order 
tZ terms must be similarly adapted. 

As an example the case with c ( t )  given by (31) witha = 0 (or (29)) was evaluated 
in detail from (25) and (34) for U, $: 0 and to, gl, 6, and t3 were found. The bubble 
shape as a function of time is given by (19), with T and V defined in (5), where 

g(e, t )  = ~ 2 {  - Q m O s  28 + T v[ - +cos 20 + h ~ y 2  cos e - 2 cos 20 + 5 cos 3e)l 

+ T2[ -A cos 28 + &V2(5 cos 8 - 4 cos 28+ 11 cos 38) 

+&V4( - 11 + 2 cos 8- 6 cos 28+ 11 cos 38 - 20 cos 48)] 

+ T3 V[&5 cos 8 - 4 cos 28 + 11 cos 38) + &V2( - 78 + 16 cos 8 
- 53 cos 28 + 73 cos 38 - 144 cos 48) 

+&V4( - 32 + 88cos8- 5 cos 28+ 50cos 38- 77 cos48+ l l O C O S  so)] 
+ o(~4)j. (351 

In  deriving this form the O(T5) term has been calculated including the contribu- 
tion from the O ( p )  term which is excluded in (32). 

As mentioned above, the character of the change in bubble shape is the same 
if (30) is used to determine the c(t) but considerably more algebra is involved. The 
O(T2) term, for example, in (35) becomes -$V2cos28. 
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When a bubble moves steadily in a fluidized bed with a velocity U,, say, an 
approximate relation between U, and F is known to be U i F  = 0.25 (see, for 
example, Murray 19653), that is V = 0.5. With V = 0.5, figure 1 illustrates the 
changing bubble shape with time T .  The actual time t’ in seconds is found from (5). 

When bubbles form naturally at  the bottom of a bed the velocity of detach- 
ment is probably close to U, (U, = 0*5/Pi).  Thus the case ( 3 5 )  and figure 1 is an 
approximation to this situation rather than the following case where = 0. 

.. I = O  
T = 0.5 
7‘= 0.7 

7‘= 0.8 

FIGURE 1. Bubble shape at  various times : U, = $3’. 

The characteristic bubble shape, approximately that in figure 1 corresponding 
t o  T = 0*7,0.8, is evident in bubbles very close to the bottom of fluidized beds. 
From (5) this means that, with T = 1, t’ = (r,/q)$. This implies, from (22), which 
gives U(t) ,  that the bubble has travelleda distance s, where (T = 1 implies t = F*) 

s/ro = U(t)dt  = 1.  sf’ 
Thus the characteristic shape of a bubble in a fluidized bed is obtained by the 
time the bubble has travelled half its diameter. This estimate from the above 
analysis can only be an order-of-magnitude one in view of the different conditions 
which obtain at  the bottom of a bed and those used above. 

A measure of the rate of growth of the wake can be taken as w,  say, where 
is the vertical velocity of the bottom of the bubble relative tothe bubble centre. 

Thus, = (36) 

which from (35) gives 

W = T [ V z +  +TV(4+ 9V2) + QT2(3 + Z O V Z +  25V4) 

+ zz TV(40+ 182V2+ 181V4)+O(T4)]. (37) 
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6. Results for a two-dimensional bubble starting from rest: U, = 0 

The method, of course, is the same as above for Uo + 0. Here we write 

\ ( I  odd) 

T=O 
T= 1.0 
T = 1.1 
T=1.2 

T=O 
T= 1.0 
T = 1.1 
T=1.2 

FIGURE 2 .  Bubble shape at various times : U, = 0. 

The form for 5 from (39) was evaluated using (31) for general a to illustrate the 
effect of a, and to show that its value is not very crucial, and is given by 

( (8 , t )  = T4{- [1 /6 (a+2) ]~~~28+T2[1 /180(~+2)2 ]  

x [5(a + 2 )  cos 8 - S(a + 1) cos 28 + (5a + 22) cos 381 

- 2( 83a2 + 206a + 200) cos 28 + 8( 7a + 62) (a + 1) cos 38 

+ ~ 4 [ 1 / 1 0 , 0 8 0 ( ~ +  2131 [ - 3qa+ 2) (a  + 8) + 5 q a  + 1) (a + 2) COS 8 

- ( 3 5 9 +  434a+ 1016) cos 481 + o(T~)}. (39) 

The difference in the change in fl  for two different a, a,, a2, say, is approximately 

&(a2 - a,) T4/(a, + 2) (a, + 2) < T4/64, 

which is less than 2 yo for allowable T. With the first term in (39) being O(T4) it 
implies, from (5 ) ,  that the smaller the bubble the faster it will deform, within, of 

t That c, =_ 0 is indicated by all of (29)-(31). 
$ The lowest order in the 0(t2) term in this case is O(t9) .  
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course, the limitations of the various assumptions above. Figure 2 illustrates the 
bubble shape for various T, taking a = 1 as an example. 

The wake growth-rate characteristic I? (from (36)) is given from (39) by 

. (40) 
2 (18a + 35) T2 + (92a2 + 479a + 646) T4 + O(T6)] @ = T3 ___ - 

[3(a + 2 )  + 30(a + 2)2 280(01+ 2)3 

It is clear from (37) and (40) (and figures 1 and 2) that the wake will grow much 
faster in circular bubbles initially moving with a given velocity, such as those 
occurring naturally at the bottom of a bed, than those starting from rest. 

7. Three-dimensional case 
The method used is the same as that given above and the results are given in 

the appendix for reference. In  place of wf, ws, real scalar potentials are used with 
the appropriate harmonic function expansions being used. From (A 3) the first- 
order acceleration is twice that found in the two-dimensional case; that is, 
equivalent to an acceleration of 29. 

Of particular interest is a comparison of the distortion (and hence an estimate 
of wake growth) rate. From (A 10) and (A 11) I$‘ is given by 

l@cTu+o = T[#V2+*V(24+ 13V2)T+O(T2)], (41) 

Equations (41), (42) correspond respectively to (37) and (40). 
A comparison of (40) and (42) shows that the deformation from the circular or 

spherical state, and hence the wake growth, in the three-dimensional case is 
considerably faster than in the two-dimensional case : that is for bubbles starting 
from rest. When V has its approximate ‘natural’ values of 0.5, 1\43 in the two- 
and three-dimensional cases respectively the O ( T )  terms in (37) and (41) are the 
same. The O(T2) term in (41), however, is larger than that in (37), and so even in 
this case the possible wake growth is again faster in the case of three-dimensional 
bubble motion. In  view of the larger accelerations, however, the corresponding 
distance travelled in t’ + (r,/g)g is here ro( 1 + 1/43) as compared with r,. 

8. Conclusions 
The constant-void-fraction solution and the irrotationality which results from 

it and the Oseen-type linearization allow solutions for small times to be found for 
the unsteady motion of initially circular and spherical bubbles in a fluidized bed. 
The solutions show that the characteristic shape of observed bubbles occurs in a 
time of O[r,/g)t] from the bubbles’ introduction into the bed. The accelerations 
in two and three dimensions are respectively g and 2g approximately. 

Wakes appear to be present behind practically all bubbles and a function W ,  
which measures the velocity of the bottom of the bubble relative to the centre of 
the bubble, is given as a possible estimate of their growth. 
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The method and results given in this paper are valid only for small times and 
cannot be simply extrapolated to predict the final steady-state bubble motion 
prevalent in most gas-fluidized beds. 

This work was jointly supported by a grant from the Michigan Memorial 
Phoenix Project and the Institute of Science and Technology, Ann Arbor, 
Michigan. 

Appendix: results for the initial motion of a three-dimensional 
spherical bubble 

The method described in the two-dimensional case is directly applicable in this 
case. Instead of using complex variable forms for the perturbation quantities v;, 
v: in (15), we use the scalar potentials #f, #s and write 

where the Pm are Legendre polynomials of order m and from (14) 

Proceeding in exactly the same way as in 53 the solutions equivalent to (211, 
(22)  are 

and the equation for c(0, t )  is 
m u3 

( - 6  C (m+1) (m+2)s rnP , (cosB)  = - C (rn+l)s,P,,(~os6)+0(5~). ( A 4 )  
m = l  m=2 

Equations (24),  (25)  hold exactly but with 

m r z =  [m/(m + 1- 111 [rn-lrz (GO - '0) + rn-lrZ-l(c1- 2/p) 

+ r n - l r z - g  c g  + *. . + r n - l r O C J ,  

cz = rl/(~+2)1r~z-,~0+5,-,~1+ ... +504-1-41, (id 2 )  1 (A51 
Mz = 2.3 ,az Pl + 3.4 2q-lPz + . . . + (1 + 2 )  (1 + 3)t+1r0 If+l, 
-h$= 320;P2+4,rzI_1p3+ ... + ( 1 + 3 ) ~ + ~ ~ 0 4 + ~ -  

Again, the O(52) in (A 4 )  will contribute to 5, with an extra ~ U o P l ( c o s 8 ) ~ &  

lent of (30)  gives in place of (33)  
The evaluation of c(t)  can be similarly obtained and, for example, the equiva- 
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For the case a = 0, the bubble shape is given by (19 ) ,  (34)  with [given by (equiva- 
lent of (35 )  and again with the 0 ( [ 2 )  term included in O(T5) term) 

with 
6 = T2[Ao + TA,  + T2A2 + T3A3 + O(T4)]  (A 7 )  

A 0 - - -  - iV2P2, 

A ,  = v3($PlP2-gP2+:P,)- V3P2, 

+ V2(YP1 P2 - $P2 + P3) - &P2, 
A 2 -  - V4( - Lp2p  1 6 1 2  + 2Lp 3 2 1 2  p - Sp 8 1 3  p - + &p2 + -%p 16 3 - ?..p 1 6  4 ) 

A ,  = V"$$P! P2 - $&P; P2 + &P; P3 - ASPl P2 - $$P, P3 + &Pl P4 

+ V3(&Pl P2 - $Pl P3 - ;$P; P2 - 3Pi + &P2 + =P 4 0 3  - -7P 8 4  ) 

+ v($PlP2-gP2+$P3). 

g p  p2--zpz 6 " p p  +"7 p +-3-p - B p  + 3 P )  +z 1 2 8 2+z8 2 3 3 2 5  2 3 2  3 16 4 1 6  5 

The U ,  = 0 case has 

m 

s,(t) = t2m--1 c. n&vl tl, 
z=o 

= [m/(2m + 1 - l ) ]  [,-,a,(c, - 2/P)  + m - p - 1 C 2  + -. . + m--lG-OCl+ll> 

with cl given by combining (A 6) and (A 8). Tedious algebra gives, for 6, 

[ = T4[B0 + T2Bl + T4B2 + O(T6)] (A 9) 

with B, = P,/(a+ 2 ) ,  

B, = [1/15(~+2)2][15(a+3)P,P2- l2(a+1)P2+16P3], 
B2 = [1 / (140(~+3)3 ) ] [ -280(a+2)P~-  105(a+2)2P:P2 

+ 84(a + 1 )  (a  + 3)  Pl P2 - 112(a + 3)  Pl P3 
- 2 4 ( a + 1 ) ( 3 ~ ~ - 1 ) P ~ + 3 5 6 ( a + l )  P3-160P4]. 

In the three-dimensional case the approximate natural value of V is 4. The 
measure of the wake growth comparable to (36)  and (38 )  can be obtained from 
(A 7 )  and (A 9) by differentiation and setting 0 = n. Thus 

TP~,co  = T[#U2+T+U(72+39U2)+O(T2) ] ,  (A 10) 
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